145 research outputs found

    Collective luminescence and phonon-induced processes in double quantum dots

    Full text link
    We study the evolution of a quantum state of a double quantum dot system interacting with the electromagnetic environment and with the lattice modes, in the presence of a coupling between the two dots. We propose a unified approach to the simulation of the system evolution under joint impact of the two reservoirs. We discuss the sub- and superradiant radiative decay of the system, the phonon-induced decay of entanglement between the dots, and the transfer of excitation between them.Comment: "Jaszowiec 2009" conferenc

    Electron localization and optical absorption of polygonal quantum rings

    Get PDF
    We investigate theoretically polygonal quantum rings and focus mostly on the triangular geometry where the corner effects are maximal. Such rings can be seen as short core-shell nanowires, a generation of semiconductor heterostructures with multiple applications. We show how the geometry of the sample determines the electronic energy spectrum, and also the localization of electrons, with effects on the optical absorption. In particular, we show that irrespective of the ring shape low-energy electrons are always attracted by corners and are localized in their vicinity. The absorption spectrum in the presence of a magnetic field shows only two peaks within the corner-localized state domain, each associated with different circular polarization. This picture may be changed by an external electric field which allows previously forbidden transitions, and thus enables the number of corners to be determined. We show that polygonal quantum rings allow absorption of waves from distant ranges of the electromagnetic spectrum within one sample.Comment: 10 pages, 12 figure

    Theory of nonlinear optical response of ensembles of double quantum dots

    Full text link
    We study theoretically the time-resolved four-wave mixing (FWM) response of an ensemble of pairs of quantum dots undergoing radiative recombination. At short (picosecond) delay times, the response signal shows beats that may be dominated by the subensemble of resonant pairs, which gives access to the information on the interdot coupling. At longer delay times, the decay of the FWM signal is governed by two rates which result from the collective interaction between the two dots and the radiation modes. The two rates correspond to the subradiant and super-radiant components in the radiative decay. Coupling between the dots enhances the collective effects and makes them observable even when the average energy mismatch between the dots is relatively large.Comment: 8 pages, 3 figures; moderately modifie

    Collective fluorescence and decoherence of a few nearly identical quantum dots

    Full text link
    We study the collective interaction of excitons in closely spaced artificial molecules and arrays of nearly identical quantum dots with the electromagnetic modes. We discuss how collective fluorescence builds up in the presence of a small mismatch of the transition energy. We show that a superradiant state of a single exciton in a molecule of two dots with realistic energy mismatch undergoes a two-rate decay. We analyze also the stability of subdecoherent states for non-identical systems.Comment: 7 pages, 5 figure

    Controlled Coulomb effects in core-shell quantum rings

    Full text link
    We analyse theoretically the possibilities of contactless control of in-gap states formed by a pair of electrons confined in a triangular quantum ring. The in-gap states are corner-localized states associated with two electrons occupying the same corner area, and thus shifted to much higher energies than other corner states, but still they are below the energies of corner-side-localized states. We show how the energies, degeneracy and splittings between consecutive levels change with the orientation of an external electric field relatively to the polygonal cross section. We also show how absorption changes in the presence of external electric and magnetic fields.Comment: 4 pages, 2 figure

    Majorana states in prismatic core-shell nanowires

    Get PDF
    We consider core-shell nanowires with conductive shell and insulating core, and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e. along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e. thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.Comment: 14 pages, 16 figures, accepted for publication in Phys. Rev.
    corecore